Optimization of Spherical Harmonic Transform Computations

نویسندگان

  • J. A. Rod Blais
  • D. A. Provins
  • M. A. Soofi
چکیده

Spherical Harmonic Transforms (SHTs) which are essentially Fourier transforms on the sphere are critical in global geopotential and related applications. Discrete SHTs are more complex to optimize computationally than Fourier transforms in the sense of the well-known Fast Fourier Transforms (FFTs). Furthermore, for analysis purposes, discrete SHTs are difficult to formulate for an optimal discretization of the sphere, especially for applications with requirements in terms of near-isometric grids and special considerations in the polar regions. With the enormous global datasets becoming available from satellite systems, very high degrees and orders are required and the implied computational efforts are very challenging. The computational aspects of SHTs and their inverses to very high degrees and orders (over 3600) are discussed with special emphasis on information conservation and numerical stability. Parallel and grid computations are imperative for a number of geodetic, geophysical and related applications, and these are currently under investigation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Algorithms for Spherical Harmonic Expansions

An algorithm is introduced for the rapid evaluation at appropriately chosen nodes on the two-dimensional sphere S2 in R3 of functions specified by their spherical harmonic expansions (known as the inverse spherical harmonic transform), and for the evaluation of the coefficients in spherical harmonic expansions of functions specified by their values at appropriately chosen points on S2 (known as...

متن کامل

Fast algorithms for spherical harmonic expansions, II

We provide an efficient algorithm for calculating, at appropriately chosen points on the two-dimensional surface of the unit sphere in R, the values of functions that are specified by their spherical harmonic expansions (a procedure known as the inverse spherical harmonic transform). We also provide an efficient algorithm for calculating the coefficients in the spherical harmonic expansions of ...

متن کامل

A Fast Transform for Spherical Harmonics

Spherical Harmonics arise on the sphere S in the same way that the (Fourier) exponential functions {e}k∈Z arise on the circle. Spherical Harmonic series have many of the same wonderful properties as Fourier series, but have lacked one important thing: a numerically stable fast transform analogous to the Fast Fourier Transform. Without a fast transform, evaluating (or expanding in) Spherical Har...

متن کامل

Generalization of Titchmarsh's Theorem for the Dunkl Transform

Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.

متن کامل

Fast, exact (but unstable) spin spherical harmonic transforms

We derive algorithms to perform a spin spherical harmonic transform and inverse for functions of arbitrary spin number. These algorithms involve recasting the spin transform on the two-sphere S as a Fourier transform on the two-torus T. Fast Fourier transforms are then used to compute Fourier coefficients, which are related to spherical harmonic coefficients through a linear transform. By recas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005